Friday, 27 October 2017

Durchschnittliche Trendlinie Prognostizieren


Gleitender Durchschnitt Vorhersage Einleitung. Wie Sie vermutlich schauen, betrachten wir einige der primitivsten Ansätze zur Prognose. Aber hoffentlich sind diese zumindest eine lohnende Einführung in einige der Rechenprobleme im Zusammenhang mit der Umsetzung von Prognosen in Tabellenkalkulationen. In diesem Sinne werden wir von Anfang an beginnen und beginnen mit Moving Average Prognosen zu arbeiten. Gleitende durchschnittliche Prognosen. Jeder ist vertraut mit gleitenden durchschnittlichen Prognosen, unabhängig davon, ob sie glauben, sie sind. Alle Studenten tun sie die ganze Zeit. Denken Sie an Ihre Testergebnisse in einem Kurs, in dem Sie vier Tests während des Semesters haben werden. Angenommen, Sie haben eine 85 auf Ihrem ersten Test. Was würden Sie vorhersagen, für Ihre zweite Test-Score Was glauben Sie, Ihr Lehrer würde für Ihre nächste Test-Punkt vorhersagen Was denken Sie, Ihre Freunde könnten für Ihre nächste Test-Punkt vorherzusagen Was denken Sie, Ihre Eltern könnten für Ihre nächste Test-Score Unabhängig davon vorhersagen Alle die blabbing Sie tun könnten, um Ihre Freunde und Eltern, sie und Ihr Lehrer sind sehr wahrscheinlich zu erwarten, dass Sie etwas im Bereich der 85 erhalten Sie gerade bekommen. Nun, jetzt gehen wir davon aus, dass trotz Ihrer Selbst-Förderung an Ihre Freunde, Sie über-schätzen Sie sich und Figur, die Sie weniger für den zweiten Test lernen können und so erhalten Sie eine 73. Nun, was sind alle betroffenen und unbekümmerten gehen Erwarten Sie erhalten auf Ihrem dritten Test Es gibt zwei sehr wahrscheinlich Ansätze, damit sie eine Schätzung unabhängig davon entwickeln, ob sie sie mit Ihnen teilen. Sie können zu sich selbst sagen, dieser Kerl ist immer bläst Rauch über seine smarts. Hes gehend, ein anderes 73 zu erhalten, wenn hes glücklich. Vielleicht werden die Eltern versuchen, mehr unterstützend und sagen, quotWell, so weit youve bekommen eine 85 und eine 73, so dass Sie vielleicht auf eine über (85 73) / 2 79. Ich weiß nicht, vielleicht, wenn Sie weniger haben Partying und werent wedelte das Wiesel ganz über dem Platz und wenn Sie anfingen, viel mehr zu studieren, konnten Sie einen höheren score. quot erhalten. Beide dieser Schätzungen sind wirklich gleitende durchschnittliche Prognosen. Der erste verwendet nur Ihre jüngste Punktzahl, um Ihre zukünftige Leistung zu prognostizieren. Dies wird als gleitende Durchschnittsprognose mit einer Datenperiode bezeichnet. Die zweite ist auch eine gleitende durchschnittliche Prognose, aber mit zwei Perioden von Daten. Nehmen wir an, dass alle diese Leute, die auf deinem großen Verstand zerschmettern, Art von dich angepisst haben und du entscheidest, auf dem dritten Test aus deinen eigenen Gründen gut zu tun und eine höhere Kerbe vor deinen quotalliesquot zu setzen. Sie nehmen den Test und Ihre Gäste ist eigentlich ein 89 Jeder, einschließlich selbst, ist beeindruckt. So jetzt haben Sie die abschließende Prüfung des Semesters herauf und wie üblich spüren Sie die Notwendigkeit, alle in die Vorhersagen zu machen, wie youll auf dem letzten Test tun. Nun, hoffentlich sehen Sie das Muster. Nun, hoffentlich können Sie das Muster sehen. Was glauben Sie, ist die genaueste Pfeife, während wir arbeiten. Jetzt kehren wir zu unserer neuen Reinigungsfirma zurück, die von Ihrer entfremdeten Halbschwester namens Whistle While We Work begonnen wurde. Sie haben einige vergangene Verkaufsdaten, die durch den folgenden Abschnitt aus einer Kalkulationstabelle dargestellt werden. Zuerst präsentieren wir die Daten für eine dreidimensionale gleitende Durchschnittsprognose. Der Eintrag für Zelle C6 sollte jetzt sein Sie können diese Zellformel auf die anderen Zellen C7 bis C11 kopieren. Beachten Sie, wie der Durchschnitt bewegt sich über die jüngsten historischen Daten, sondern verwendet genau die drei letzten Perioden zur Verfügung für jede Vorhersage. Sie sollten auch bemerken, dass wir nicht wirklich brauchen, um die Vorhersagen für die vergangenen Perioden zu machen, um unsere jüngste Vorhersage zu entwickeln. Dies ist definitiv anders als das exponentielle Glättungsmodell. Ive eingeschlossen das quotpast predictionsquot, weil wir sie auf der folgenden Webseite verwenden, um Vorhersagegültigkeit zu messen. Nun möchte ich die analogen Ergebnisse für eine zwei-Periode gleitenden Durchschnitt Prognose zu präsentieren. Der Eintrag für Zelle C5 sollte jetzt sein Sie können diese Zellformel auf die anderen Zellen C6 bis C11 kopieren. Beachten Sie, wie jetzt nur die beiden letzten Stücke der historischen Daten für jede Vorhersage verwendet werden. Wieder habe ich die quotpast Vorhersagequot für illustrative Zwecke und für die spätere Verwendung in der Prognose Validierung enthalten. Einige andere Dinge, die wichtig zu beachten sind. Für eine m-Periode gleitende Durchschnittsprognose werden nur die m neuesten Datenwerte verwendet, um die Vorhersage durchzuführen. Nichts anderes ist notwendig. Für eine m-Periode gleitende durchschnittliche Prognose, wenn Sie Quotpast Vorhersagequot, beachten Sie, dass die erste Vorhersage tritt im Zeitraum m 1 auf. Diese beiden Fragen werden sehr wichtig sein, wenn wir unseren Code entwickeln. Entwicklung der Moving Average Funktion. Nun müssen wir den Code für die gleitende Durchschnittsprognose entwickeln, die flexibler genutzt werden kann. Der Code folgt. Beachten Sie, dass die Eingaben für die Anzahl der Perioden sind, die Sie in der Prognose und dem Array der historischen Werte verwenden möchten. Sie können es in beliebiger Arbeitsmappe speichern. Funktion MovingAverage (Historische, NumberOfPeriods) As Single Deklarieren und Variablen Dim Artikel As Variant Dim Zähler As Integer Dim Accumulation As Single Dim HistoricalSize Initialisierung As Integer initialisieren Variablen Zähler 1 Accumulation 0 Bestimmung der Größe der historischen Array HistoricalSize Historical. Count für Zähler 1 Um NumberOfPeriods thesaurierend die entsprechende Anzahl von jüngsten zuvor beobachteten Werte Accumulation Accumulation Historisch (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation / NumberOfPeriods der Code wird in der Klasse erklärt. Sie möchten die Funktion in der Tabellenkalkulation positionieren, so dass das Ergebnis der Berechnung angezeigt wird, wo es die folgenden. Moving Average Dieses Beispiel lehrt, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel zu berechnen. Eine Bewegung wird verwendet, um Unregelmäßigkeiten (Spitzen und Täler) zu glätten, um Trends leicht zu erkennen. 1. Erstens, werfen wir einen Blick auf unsere Zeitreihe. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Klicken Sie hier, um das Analyse-ToolPak-Add-In zu laden. 3. Wählen Sie Verschiebender Durchschnitt aus, und klicken Sie auf OK. 4. Klicken Sie im Feld Eingabebereich auf den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3 aus. 8. Zeichnen Sie ein Diagramm dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der letzten 5 Datenpunkte und der aktuelle Datenpunkt. Als Ergebnis werden Spitzen und Täler geglättet. Die Grafik zeigt eine zunehmende Tendenz. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da nicht genügend frühere Datenpunkte vorhanden sind. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Spitzen und Täler geglättet. Je kleiner das Intervall, desto näher sind die gleitenden Mittelwerte zu den tatsächlichen Datenpunkten. Möchten Sie diese kostenlose Website Bitte teilen Sie diese Seite auf GoogleMoving Durchschnitt - MA BREAKING DOWN Moving Average - MA Als SMA-Beispiel betrachten Sie eine Sicherheit mit den folgenden Schlusskurse über 15 Tage: Woche 1 (5 Tage) 20, 22, 24, 25, 23 Woche 2 (5 Tage) 26, 28, 26, 29, 27 Woche 3 (5 Tage) 28, 30, 27, 29, 28 Eine 10-tägige MA würde die Schlusskurse für die ersten 10 Tage als Durchschnitt ausrechnen Der erste Datenpunkt. Der nächste Datenpunkt würde den frühesten Preis senken, den Preis am Tag 11 addieren und den Durchschnitt nehmen, und so weiter, wie unten gezeigt. Wie bereits erwähnt, verzögert MAs die aktuelle Preisaktion, weil sie auf vergangenen Preisen basieren, je länger der Zeitraum für die MA ist, desto größer ist die Verzögerung. So wird ein 200-Tage-MA haben eine viel größere Verzögerung als eine 20-Tage-MA, weil es Preise für die letzten 200 Tage enthält. Die Länge des zu verwendenden MA hängt von den Handelszielen ab, wobei kürzere MAs für den kurzfristigen Handel und längerfristige MAs eher für langfristige Anleger geeignet sind. Die 200-Tage-MA ist weithin gefolgt von Investoren und Händlern, mit Pausen über und unter diesem gleitenden Durchschnitt als wichtige Trading-Signale. MAs auch vermitteln wichtige Handelssignale auf eigene Faust, oder wenn zwei Durchschnitte überqueren. Eine steigende MA zeigt an, dass die Sicherheit in einem Aufwärtstrend liegt. Während eine sinkende MA zeigt, dass es in einem Abwärtstrend ist. In ähnlicher Weise wird das Aufwärtsmoment mit einem bulligen Crossover bestätigt. Die auftritt, wenn eine kurzfristige MA über einem längerfristigen MA kreuzt. Abwärts-Momentum wird mit einem bärischen Übergang bestätigt, der auftritt, wenn eine kurzfristige MA unter einer längerfristigen MA. Nikkei 225 Technische Analyse: 200-Tage-Moving-Average im Spiel - Nikkei 225 schwenkt weiter um 16.500 - Reichweite zwischen 17.000 und 16.000 sieht kurzfristig aus - Preis liegt noch unterhalb von 200-tägigen SMA Wenn Ihr Händler auf der Suche nach Trading-Ideen ist, schauen Sie sich unsere Trading Guides hier an. Der Nikkei 225 stößt heute niedriger aus als der Index um die 16.500-Marke weiter schwenkt. Nikkei 225 Preise liegen zwischen der gut definierten 18.000 Widerstandszone und der 15.000 Unterstützung seit Beginn des Jahres, mit Gewinnen scheinen als Korrektur im Zusammenhang mit der kurzfristigen Abwärtstrend von Juni 2015 Höhen. In der Tat ist der Preis noch Handel unterhalb seiner 200-Tage-SMA zum Zeitpunkt des Schreibens. Dieses scheint, die Strecke zwischen 16.000 bis 17.000 Schlüssel kurzfristig zu bilden. Der Index ist der Handel in diesem engeren Bereich für die letzten Monate, mit dem 16.500 Ebene in der Mitte Indikator für kurzfristige Impuls. Wenn der Nikkei es schafft, über seinen 200-tägigen SMA und den 17.000-Griff zu brechen, scheint sich der Schwerpunkt wahrscheinlich auf einen potenziellen Versuch auf die oben erwähnten längerfristigen Bereichshöhe zu verschieben. Auf der anderen Seite könnte ein Umzug nach unten die 16.000-Ebene aussetzen, gefolgt von der Reichweite rund 15.000. Nikkei 225 Tages-Chart: 30. September 2016 --- Geschrieben von Oded Shimoni, Junior Currency Analyst für DailyFX Folgen Sie ihm auf Twitter bei OdedShimoni DailyFX bietet Forex News und technische Analyse über die Trends, die die globalen Währungsmärkte beeinflussen. Erfahren Sie Forex Trading mit einem kostenlosen Praxis-Konto und Trading-Charts aus FXCM. Add, ändern oder entfernen Sie eine Trendlinie in einem Chart Erfahren Sie mehr über die Prognose und zeigt Trends in Diagrammen Trendlinien werden verwendet, um grafisch darstellen Trends in Daten und zur Analyse von Problemen der Vorhersage. Eine solche Analyse wird auch Regressionsanalyse genannt. Durch die Verwendung der Regressionsanalyse können Sie eine Trendlinie in einem Diagramm über die tatsächlichen Daten hinaus ausdehnen, um zukünftige Werte vorherzusagen. Beispielsweise verwendet das folgende Diagramm eine einfache lineare Trendlinie, die zwei Quartale prognostiziert, um klar einen Trend zu steigenden Umsätzen zu zeigen. Tipps Sie können auch einen gleitenden Durchschnitt erstellen, der Schwankungen in den Daten glättet und das Muster oder den Trend deutlicher zeigt. Wenn Sie ein Diagramm oder eine Datenreihe ändern, so dass es beispielsweise die zugehörige Trendlinie nicht mehr unterstützen kann, indem Sie den Diagrammtyp in ein 3D-Diagramm ändern oder die Ansicht eines PivotChart-Berichts oder eines zugeordneten PivotTable-Berichts ändern, wird die Trendlinie nicht mehr angezeigt Auf dem Diagramm. Für Zeilendaten ohne Diagramm können Sie AutoFill oder eine der statistischen Funktionen wie GROWTH () oder TREND () verwenden, um Daten für am besten passende lineare oder exponentielle Zeilen zu erstellen. Den richtigen Trendline-Typ für Ihre Daten auswählen Wenn Sie in Microsoft Office Excel eine Trendlinie zu einem Diagramm hinzufügen möchten, können Sie einen dieser sechs verschiedenen Trend - oder Regressionstypen wählen: lineare Trendlinien, logarithmische Trendlinien, Polynom-Trendlinien, Power-Trendlinien, exponentiell Trendlinien oder gleitende durchschnittliche Trendlinien. Die Art der Daten, die Sie festlegen, die Art der Trendlinie, die Sie verwenden sollten. Eine Trendlinie ist am genauesten, wenn ihr R-squared-Wert auf oder nahe bei 1. Wenn Sie eine Trendlinie zu Ihren Daten passen, berechnet Excel automatisch seinen R-Quadrat-Wert. Wenn Sie möchten, können Sie diesen Wert in Ihrem Diagramm anzeigen. Lineare Trendlinien Eine lineare Trendlinie ist eine am besten passende gerade Linie, die mit einfachen linearen Datensätzen verwendet wird. Ihre Daten sind linear, wenn das Muster in seinen Datenpunkten einer Linie ähnelt. Eine lineare Trendlinie zeigt in der Regel, dass etwas mit steiler Geschwindigkeit steigt oder sinkt. Im folgenden Beispiel illustriert eine lineare Trendlinie, dass die Verkäufe von Kühlschränken über einen Zeitraum von 13 Jahren konstant gestiegen sind. Beachten Sie, dass der R-Quadrat-Wert 0,979 ist, was eine gute Übereinstimmung der Zeile zu den Daten ist. Logarithmische Trendlinien Eine logarithmische Trendlinie ist eine am besten passende gekrümmte Linie, die verwendet wird, wenn die Änderungsrate der Daten schnell zunimmt oder abnimmt und dann abnimmt. Eine logarithmische Trendlinie kann sowohl negative als auch positive Werte verwenden. Das folgende Beispiel verwendet eine logarithmische Trendlinie, um das prognostizierte Bevölkerungswachstum von Tieren in einem festen Raum zu veranschaulichen, in dem die Population ausgeglichen wurde, als der Platz für die Tiere abnahm. Beachten Sie, dass der R-Quadrat-Wert 0,933 ist, was eine relativ gute Passung der Zeile zu den Daten ist. Polynom-Trendlinien Eine Polynom-Trendlinie ist eine gekrümmte Linie, die verwendet wird, wenn Daten schwanken. Es eignet sich zum Beispiel für die Analyse von Gewinnen und Verlusten über einen großen Datensatz. Die Reihenfolge des Polynoms kann durch die Anzahl der Fluktuationen in den Daten oder durch die Anzahl der Biegungen (Hügel und Täler) in der Kurve bestimmt werden. Eine Ordnung 2 Polynom-Trendlinie hat in der Regel nur einen Hügel oder Tal. Ordnung 3 hat im Allgemeinen ein oder zwei Hügel oder Täler. Ordnung 4 hat in der Regel bis zu drei Hügeln oder Tälern. Das folgende Beispiel zeigt eine Polynom-Trendlinie (ein Hügel), um die Beziehung zwischen Fahrgeschwindigkeit und Kraftstoffverbrauch zu erläutern. Beachten Sie, dass der R-Quadrat-Wert 0,979 ist, was eine gute Übereinstimmung der Zeile zu den Daten ist. Leistung Trendlinien Eine Leistung Trendlinie ist eine gekrümmte Linie, die mit Datensätzen, die Messungen, die mit einer bestimmten Rate, zum Beispiel die Beschleunigung eines Rennwagens in 1-Sekunden-Intervallen zu erhöhen vergleichen. Sie können keine Power-Trendline erstellen, wenn Ihre Daten Null - oder negative Werte enthalten. Im folgenden Beispiel werden Beschleunigungsdaten durch Zeichnen der Distanz in Metern pro Sekunde dargestellt. Die Leistung Trendlinie zeigt deutlich die zunehmende Beschleunigung. Beachten Sie, dass der R-Quadrat-Wert 0,986 ist, was eine nahezu perfekte Passung der Zeile zu den Daten ist. Exponentielle Trendlinien Eine exponentielle Trendlinie ist eine gekrümmte Linie, die verwendet wird, wenn Datenwerte mit stetig steigenden Raten steigen oder fallen. Sie können keine exponentielle Trendlinie erstellen, wenn Ihre Daten Null - oder negative Werte enthalten. Im folgenden Beispiel wird eine exponentielle Trendlinie verwendet, um die abnehmende Menge an Kohlenstoff 14 in einem Objekt darzustellen, während es altert. Beachten Sie, dass der R-Quadrat-Wert 0.990 ist, was bedeutet, dass die Linie die Daten nahezu perfekt passt. Gleitende durchschnittliche Trendlinien Eine gleitende durchschnittliche Trendlinie glättet die Fluktuationen der Daten, um ein Muster oder einen Trend deutlicher darzustellen. Ein gleitender Durchschnitt verwendet eine bestimmte Anzahl von Datenpunkten (die durch die Option "Periode" festgelegt wurden), sie mittelt sie und verwendet den Durchschnittswert als Punkt in der Zeile. Wenn beispielsweise Period auf 2 gesetzt ist, wird der Durchschnitt der ersten beiden Datenpunkte als erster Punkt in der gleitenden durchschnittlichen Trendlinie verwendet. Der Durchschnitt der zweiten und dritten Datenpunkte wird als zweiter Punkt in der Trendlinie usw. verwendet. Im folgenden Beispiel zeigt eine gleitende durchschnittliche Trendlinie ein Muster in der Anzahl der über einen Zeitraum von 26 Wochen verkauften Häuser. Hinzufügen einer Trendlinie Klicken Sie auf einer Datenreihe, auf die Sie eine Trendlinie oder einen gleitenden Durchschnitt hinzufügen möchten, auf einer unstacked, 2-D-, Bereichs-, Balken-, Spalten-, Linien-, Lager-, xy - (Scatter-) oder Blasendiagramm Um die Datenreihe aus einer Liste von Diagrammelementen auszuwählen: Klicken Sie auf eine beliebige Stelle im Diagramm. Dadurch werden die Diagrammtools angezeigt. Hinzufügen des Designs. Layout . Und Format-Registerkarten. Klicken Sie auf der Registerkarte Format in der Gruppe Aktuelle Auswahl auf den Pfeil neben dem Diagrammelemente-Feld, und klicken Sie dann auf das Diagrammelement, das gewünscht wird. Hinweis: Wenn Sie ein Diagramm mit mehr als einer Datenreihe auswählen, ohne eine Datenreihe auszuwählen, zeigt Excel das Dialogfeld Trendlinie hinzufügen an. Klicken Sie im Listenfeld auf die gewünschte Datenreihe, und klicken Sie dann auf OK. Klicken Sie auf der Registerkarte Layout in der Gruppe Analysis auf Trendline. Führen Sie einen der folgenden Schritte aus: Klicken Sie auf eine vordefinierte Trendline-Option, die Sie verwenden möchten. Hinweis: Dies gilt für eine Trendlinie, ohne dass Sie bestimmte Optionen auswählen können. Klicken Sie auf Weitere Trendlinienoptionen. Und dann in der Kategorie Trendlinienoptionen unter Trend - / Regressionstyp. Klicken Sie auf den Typ der Trendlinie, die Sie verwenden möchten.

No comments:

Post a Comment